Synthesis of 4- and 5-Substituted 1-Hydroxyimidazoles through Directed Lithiation and Metal-Halogen Exchange

Birgitte Langer Eriksen, Per Vedsø, and Mikael Begtrup*

Department of Medicinal Chemistry, Royal Danish School of Pharmacy, Universitetsparken 2, DK-2100 Copenhagen, Denmark

begtrup@dfh.dk

Received November 2, 2000

Electrophiles were introduced regioselectively at the 5-position of 1-(benzyloxy)imidazole by lithiation at C-5 after protection of C-2 with a chloro or a trimethylsilyl group. Subsequent treatment with an electrophile afforded 5-substituted 1-(benzyloxy)-2-chloroimidazoles **8–13** and 5-substituted 1-(benzyloxy)imidazoles **3–5**, the 2-(trimethylsilyl) group being lost during workup. Electrophiles were introduced regioselectively at the 4-position of 1-(benzyloxy)imidazole by bromine—lithium exchange of 4-bromo-2-chloro-1-(benzyloxy)imidazoles, protected at C-5 with chloro or trimethylsilyl groups, followed by reaction with an electrophile. The 5-(trimethylsilyl) group was removed via base-catalyzed desilylation. Chlorine at C-2 and *O*-benzyl groups were removed by palladium-catalyzed hydrogenolysis.

Introduction

1-Hydroxyimidazoles (parent compound **1a**) are gaining interest due to their biological activity, which encompasses antiviral, ¹ antihypertensive, ² angiotensin II antagonist activity, ³ bacteriostatic, ⁴ and insecticidal properties. ⁵ Only a few 1-hydroxyimidazoles with functional substituents have been described. ⁶

Recently we reported a method for the synthesis of a variety of 2-substituted 1-hydroxyimidazoles. The method was based on lithiation of 1-(benzyloxy)imidazole (1b) followed by reaction with an electrophile and subsequent removal of the benzyl group by palladium-catalyzed hydrogenolysis or by hydrolysis with hydrochloric acid. This seems to be the only reported method for introduction of functional substituents in 1-hydroxyimidazoles per se. This strategy has now been extended to a protocol for the regioselective functionalization of the 4- and the 5-positions using lithiation followed by reaction with an electrophile.

Results and Discussion

Preparation of 5-Substituted 1-(Benzyloxy)imidazoles. As for other 1-substituted imidazoles⁸ lithiation at C-5 in 1-(benzyloxy)imidazole is only possible when the 2-position is protected. As protection groups a trimethylsilyl group^{9–11} and a chlorine^{12,13} were tested.

When a trimethylsilyl group was used for protection of the 2-position, **1b** was lithiated at C-2 by treatment

Scheme 1

with *n*-butyllithium at -78 °C. Subsequent addition of trimethylsilyl chloride (TMSCl) gave rise to 1-(benzyloxy)-2-(trimethylsilyl)imidazole (2),7 which was selectively metalated in situ at C-5 by treatment with a second equivalent of n-butyllithium at -78 °C in the presence of TMEDA. Subsequent addition of MeOD, DMF, or TMSCl followed by aqueous workup led to simultaneous loss of the 2-TMS group with formation of the 5-substituted 1-(benzyloxy)imidazoles 3-5 in 72-90% yield (Scheme 1). When hexachloroethane was used as an electrophile, the expected product 6 was contaminated with 2-chloro- and 2,5-dichloro-1-(benzyloxyimidazole) (7 and 11) due to loss of a protective trimethylsilyl group during the course of the reaction. The trimethylsilyl group was also lost when methyl iodide was used as an electrophile, giving rise to 2-methyl-substituted byproducts. Due to this limitation we therefore investigated the use of a 2-chloro substituent as protection group for the 2-position, since it can be removed by mild, palladiumcatalyzed hydrogenolysis. 77 was then ortho-lithiated at C-5 using 1.2 equiv of *n*-butyllithium/TMEDA. Subsequent treatment with carbon, halogen, or tin electrophiles gave 5-substituted 1-(benzyloxy)-2-chloroimidazoles 8-13 in 88–99% yields (Scheme 2). By way of example the protective chloro substituent and the benzyl group of 9 could be removed simultaneously by palladium-catalyzed

^{*} To whom correspondence should be addressed. Phone: +4535306000. Fax: +4535306040.

⁽¹⁾ Harnden, M. R.; Jennings, L. J.; McKie, C. M. D.; Parkin, A. *Synthesis* **1990**, 893–895.

⁽²⁾ Philipp, A. H.; Jirkovsky, I. L. U.S. Pat. 4,232,029, 1980; *Chem. Abstr.* **1981**, *94*, 103377.

⁽³⁾ Kim, K. S. U.S. Pat. 5294722, 1994; *Chem. Abstr.* **1994**, *120*, 323571c.

⁽⁴⁾ Abramovitch, R. A.; Cue, B. W. U.S. Pat. 4006160, 1977; Chem. Abstr. 1977, 86, 189707.

⁽⁵⁾ Mamalis, P.; Croix, E. S. L.; Mhasalker, S. E. Ger. Offen. 2,254,474, 1973; *Chem. Abstr.* **1973**, *79*, 42507g.

⁽⁶⁾ For a list of functionalized 1-hydroxyimidazoles see ref 7.

⁽⁷⁾ Eriksen, B. L.; Vedsø, P.; Morel, S.; Begtrup, M. *J. Org. Chem.* **1998**, *63*, 12–16.

⁽⁸⁾ Iddon, B.; Ngochindo, R. I. J. Heterocycl. Chem. 1994, 38, 2487.

⁽⁹⁾ Jutzi, P.; Sakriss, W. *Chem. Ber.* **1973**, *106*, 2815. (10) Carpenter, A. J.; Chadwick, D. J. *Tetrahedron* **1986**, *42*, 2351.

⁽¹⁰⁾ Carpenter, A. J.; Chadwick, D. J. Tetrahedron 1986, 42, 2351.
(11) Lipshutz, B. H.; Huff, B.; Hagen, W. Tetrahedron Lett. 1988, 29, 3411.

⁽¹²⁾ Suzuki, M.; Tanaka, H.; Miyasaka, T. *Chem. Pharm. Bull.* **1987**, *35*, 4056.

⁽¹³⁾ Tanaka, H.; Hirayama, M.; Suzuki, M.; Miysaka, T.; Matsuda, A.; Ueda, T. Tetrahedron 1986, 42, 1971.

hydrogenolysis at 0 °C for 2 h, affording the hydrochloride 14 in 96% yield. Similar hydrogenolysis of 11 caused loss of both chlorine substituents with production of 1-hydroxyimidazole hydrochloride (15) in quantitative yield, suggesting the 5-chloro substituent as protecting group for the 5-position.

96

Preparation of 4-Substituted 1-(Benzyloxy)imidazoles. Attempted deprotonation of 11 using 1.2 equiv of *n*-butyllithium/TMEDA failed as indicated by the fact that no deuterium incorporation was observed upon quenching with MeOD. Instead a 3:2 mixture of 1-(benzyloxy)-2-chloro-5-deuterioimidazole (8) and 1-(benzyloxy)-5-chloro-2-deuterioimidazole was formed presumably due to chlorine-lithium exchange at C-5 and C-2. As reported for other 1-substituted imidazoles¹⁴ H-4 is not sufficiently acidic to be abstracted by butyllithium bases, and therefore bromine-lithium exchange was attempted.

In the first approach 1-(benzyloxy)-2,5-dichloroimidazole (16) was brominated at C-4 to give 17 in 98% yield. Subsequent bromine-lithium exchange at C-4 was then effected using 1.5 equiv of *n*-butyllithium. Quenching the putative 4-lithio intermediate with various electrophiles produced 4-substituted 2,5-dichloro-1-(benzyloxy)imidazoles 18-23 in 78-96% yields (Scheme 3). Unexpectedly, it was not possible to remove the 5-chloro substituent in **18–23** by palladium-catalyzed hydrogenolysis. Therefore, a more labile C-5 protecting group had to be developed. Thus, 4-substituted 1-(benzyloxy)imidazoles devoid of a 5-substituent could be prepared in an alternative approach by which 1-(benzyloxy)-2-chloroimidazole was first dibrominated to give 1-(benzyloxy)-4,5-dibromo-2-chloroimidazole (31) in 77% yield (Scheme 4). In a onepot reaction 31 was then treated with 1.1 equiv of n-butyllithium to effect regioselective bromine-lithium exchange at the 5-position. Subsequent addition of 1.1 equiv of TMSCl gave the 5-silylated intermediate 24, which upon treatment with a second equivalent of n-butyllithium and an electrophile produced 4-substituted 1-(benzyloxy)imidazoles 25-28 in 71-91% yields. If desired, 24 could be isolated after the first bromine-

^a Reagents and conditions: (i) NaOMe, MeOH, 20 °C, 3 h; (ii) K₂CO₃, MeOH, 20 °C, 1 h; (iii) H₂, Pd/C, 0 °C, 2 h.

lithium exchange in 94% yield. This compound was then lithiated and quenched with methyl iodide, and 26 was obtained in 86% yield.

When the crude 4,5-dibromo compound 31 was treated with aqueous sodium sulfite, regioselective reduction took place at C-5 to give the 4-bromo compound 32 in 78% overall yield. When 1-(benzyloxy)-4-bromo-2-chloroimidazole was treated with *n*-butyllithium followed by reaction with MeOD, a 1:1 mixture of 1-(benzyloxy)-2-chloro-5-deuterio-4-bromoimidazole and 8 was obtained. This indicated poor chemoselectivety and thermodynamical instability of the initially formed 4-lithio-1-(benzyloxy)-2-chloroimidazole. This experiment confirms that selective C-4 lithiation requires a 4-bromoimidazole protected at the 5-position. Removal of the protective 5-silyl group of 26 and 27 could be effected under mild basic conditions. Thus, 1-(benzyloxy)-2-chloro-4-formyl-5-(trimethylsilyl)imidazole (27) was desilylated using K₂CO₃ in methanol to give 1-(benzyloxy)-2-chloro-4-formylimidazole (30) in 70% yield. Likewise, 1-(benzyloxy)-2-chloro-4-methyl-5-(trimethylsilyl)imidazole (26) was desilylated by treatment with sodium methoxide to give 1-(benzyloxy)-2chloro-4-methylimidazole (29) in 95% yield. The feasibility of the debenzylation dechlorination protocol described above was demonstrated by the quantitative palladiumcatalyzed hydrogenolysis at 0 °C for 2 h of compound 29 to give 1-hydroxy-4-methylimidazole, isolated as its hydrochloride (33).

In conclusion, methods for regioselective introduction of electrophiles into the 4- and the 5-positions of 1-(benzyloxy)imidazole have been developed. In the 5-position the method is based on proton-lithium exchange and in the 4-position on halogen-lithium exchange. During these reactions chloro and trimethylsilyl serve as protecting groups for the 2-position and a trimethylsilyl group serves as protecting group for the 5-position.

Experimental Section

General Methods and Materials. See ref 7. The compounds were never distilled. Violent decomposition of imidazole 1-oxides has been reported to take place at ca. 150 °C.15

Preparation of 5-Substituted 1-(Benzyloxy)imidazoles. In Situ Protection of C-2 Using Trimethylsilyl as Protecting Group. Standard Procedure. Under nitrogen, a solution of 1-(benzyloxy)imidazole (1b)⁷ (174 mg, 1.0 mmol) in tetrahydrofuran (8 mL) was cooled to -78 °C. n-Butyllithium (1.48 M in hexanes) (0.81 mL, 1.2 mmol) was added with stirring over 2 min. After the resulting mixture was stirred for a further 5 min, trimethylchlorosilane (133 μ L, 1.05 mmol) was added. Stirring was continued for 1 h, and TMEDA (0.3 mL, 2 mmol) and n-butyllithium (1.35 mL, 2 mmol) were added. After the resulting mixture had been stirred for 1 h, the electrophile was added. Stirring was continued at $-78\ ^{\circ}\text{C}$ for 1 h, and the reaction mixture was allowed to warm to 20 °C over the course of 1 h. Stirring was continued for a further 0.5 h. The mixture was worked up by addition of saturated aqueous sodium hydrogen carbonate (10 mL), extraction with dichloromethane (3 × 10 mL), drying (MgSO₄), filtration, and removal of the solvents to give the crude product.

1-(Benzyloxy)[5-²**H]imidazole (3).** After addition of monodeuteriomethanol (MeOD; 0.3 mL, 7.4 mmol), the mixture was stirred and worked up as described above to give a residue which upon flash chromatography (heptanes—ethyl acetate, $2:1 \rightarrow 0:1$) gave 156 mg (90%) of 1-(benzyloxy)[5-²H]imidazole. The ¹H NMR spectrum was identical with that of the starting material except that the signal from H-5 was absent and the signal from H-4 collapsed to a doublet. The signal from C-5 at 115.1 ppm appeared as a triplet ($J_{\rm CD}=28.2$ Hz).

1-(Benzyloxy)-5-formylimidazole (4). After addition of dimethylformamide (0.39 mL, 5 mmol) and stirring as described above, 2 M aqueous hydrochloric acid (5 mL) was added, and the mixture was stirred for 1 h. Addition of saturated aqueous sodium hydrogen carbonate until pH 8 and extractive workup with dichloromethane as described above gave a residue which by flash chromotography (heptanesethyl acetate, 2:1 \rightarrow 0:1) afforded 145 mg (72%) of 4 as a yellow oil which crystallized from heptane—ethyl acetate. Mp: 52–54 °C (heptanes—ethyl acetate). Anal. Found: C, 65.63; H, 5.24; N, 13.87. Calcd for C₁₁H₁₀N₂O₂: C, 65.34; H, 4.98; N, 13.85. NMR: $\delta_{\rm H}$ (CDCl₃) 9.73 (1H, d, J = 0.78 Hz, HCO), 7.67 (1H, d, J = 0.95 Hz, H-4 or H-2), 7.41–7.18 (6H, m, Ph and H-4 or H-2), 5.22 (2H, s, CH₂); $\delta_{\rm C}$ (CDCl₃) 177.0 (d), 137.9 (d), 137.4 (d), 132.4 (s), 129.8 (d), 129.6 (d), 128.6 (d), 127.7 (s), 82.3 (t).

1-(Benzyloxy)-5-(trimethylsilyl)imidazole (5). After addition of trimethylchlorosilane (0.25 mL, 2 mmol), the mixture was stirred and worked up as described above to give a residue which upon flash chromotography (heptanes−ethyl acetate, 2:1 → 0:1) gave 221.4 mg (90%) of **5** as a yellow oil. Anal. Found: C, 63.51; H, 7.39; N, 11.24. Calcd for C₁₃H₁₈N₂OSi: C, 63.37; H, 7.36; N, 11.37. NMR: $\delta_{\rm H}$ (CDCl₃) 7.36−7.29 (6H, m, Ph and H-4 or H-2), 6.92 (1H, d, J = 1.0 Hz, H-4 or H-2), 5.04 (2H, s, CH₂), 0.30 (9H, s, SiMe₃); $\delta_{\rm C}$ (CDCl₃) 134.1 (d), 133.3 (d), 133.3 (s), 129.0 (d), 128.8 (d), 128.4 (d), 126.0 (s), 82.0 (t) −1.4 (q).

Preparation of 5-Substituted 1-(Benzyloxy)-2-chloro-imidazoles 8–13. Standard Prodedure. Under nitrogen, a solution of 1-(benzyloxy)-2-chloro-imidazole (7)⁷ (208.5 mg, 1.0 mmol) in tetrahydrofuran (8 mL) was cooled to -78 °C. TMEDA (0.18 mL, 1.2 mmol) and n-butyllithium (1.33 M in hexanes) (0.90 mL, 1.2 mmol) were added with stirring over 2 min. After the resulting mixture was stirred for a further 3 min, the electrophile was added. Stirring was continued at -78 °C for 1 h, and the reaction mixture was allowed to warm to 20 °C over the course of 1 h. Stirring was continued at 20 °C for a further 0.5 h. The mixture was worked up by addition of saturated aqueous sodium hydrogen carbonate (10 mL), extraction with dichloromethane (3 × 10 mL), drying (MgSO₄), filtration, and removal of the solvents to give the crude product.

1-(Benzyloxy)-2-chloro[5- 2 H]**imidazole (8).** After addition of MeOD (0.3 mL, 7.4 mmol), the mixture was stirred and worked up as described above to give a residue which upon flash chromotography (heptanes—ethyl acetate, $2:1 \rightarrow 0:1$) gave 187.6 mg (90%) of **8**. The 1 H NMR spectrum was identical with that of the starting material except that the signal from H-5

was absent and the signal from H-4 collapsed to a singlet. The signal from C-5 at 117.8 ppm appeared as a triplet ($J_{\rm CD}=31.1$ Hz).

1-(Benzyloxy)-2-chloro-5-methylimidazole (9). Methyl iodide (0.32 mL, 5 mmol) was added, and the mixture was stirred at -78 °C for 1 h. To destroy excess methyl iodide, 33% dimethylamine in ethanol (5 mL) was added. The mixture was worked up as above to give the crude product, which was flash chromatographed (heptanes-ethyl acetate, 1:1), affording 207 mg (93%) of **9.** Anal. Found: C, 59.54; H, 5.09; N, 12.58. Calcd for C₁₁H₁₁N₂OCl: C, 59.33; H, 4.98; N, 12.58. NMR: $\delta_{\rm H}$ (CDCl₃) 7.44–7.36 (5H, m, Ph), 6.54 (1H, q, J = 1.0 Hz, H-4), 5.10 (2H, S, CH₂), 1.98 (3H, d, J = 1.0, Me); $\delta_{\rm C}$ (CDCl₃) 132.6 (s), 129.8 (d), 129.6 (d), 128.6 (d), 126.8 (s), 125.7 (s), 121.1 (d), 80.9 (t), 8.4 (q).

1-(Benzyloxy)-2-chloro-5-formylimidazole (10). After addition of dimethyformamide (0.15 mL, 2 mmol), the mixture was stirred as in the standard procedure. Then 2 M aqueous hydrochloric acid (5 mL) was added, and the mixture was stirred for 1 h. Addition of saturated aqueous sodium hydrogen carbonate until pH 8 and extractive workup with dichloromethane as described above gave a residue which by flash chromatography (heptanes-ethyl acetate, 1:1) afforded 234 mg $\,$ (99%) of 10 as a yellow oil which crystallized from pentaneethyl acetate. Recrystallization (pentane-ethyl acetate) gave mp 50-51 °C. Anal. Found: C, 55.95; H, 3.64; N, 11.83. Calcd for $C_{11}H_9N_2O_2Cl$: C, 55.83; H, 3.83; N, 11.84. NMR: δ_H (CDCl₃) 9.59 (1H, d, J = 1.1 Hz, HCO), 7.59 (1H, d, J = 0.95 Hz, H-4), 7.48–7.39 (5H, m, Ph), 5.26 (2H, s, CH₂); δ_C (CDCl₃) 176.4 (d), 136.2 (d), 135.5 (s), 131.9 (s), 130.3 (d), 129.9 (d), 129.5 (s), 128.7 (d), 82.1 (t).

1-(Benzyloxy)-2,5-dichloroimidazole (11). After addition of hexachloroethane (710 mg, 3 mmol) dissolved in THF (2 mL), the mixture was worked up as above to give the crude product, which was flash chromatographed (heptanes−ethyl acetate, 1:0 → 2:1) to afford 224 mg (92%) of **11**. Mp: 38–40 °C (pentane). Anal. Found: C, 49.27; H, 3.39; N, 11.65. Calcd for C₁₀H₈N₂OCl₂: C, 49.41; H, 3.32; N, 11.52. NMR: $\delta_{\rm H}$ (CDCl₃) 7.42 (s, 5H, Ph) 6.77 (s, 1H, H-4), 5.16 (s, 2H, CH₂); $\delta_{\rm C}$ (CDCl₃) 132.1 (s), 130.0 (d), 129.8 (d), 128.6 (d), 126,9 (s), 121.4 (d), 116.1 (s), 81.76 (t).

1-(Benzyloxy)-2-chloro-5-iodoimidazole (12). After addition of iodine (508 mg, 2 mmol), the mixture was worked up as above to give the crude product, which was flash chromatographed (heptanes—ethyl acetate, 3:1) to give 314 mg (94%) of **12**. Mp: 63–64 °C. Anal. Found: C, 36.10; H, 2.28; N, 8.31. Calcd for $C_{10}H_8N_2OCII$: C, 35.90; H, 2.41; N, 8.37. NMR: δ_H (CDCl₃) 7.49–7.41 (m, 5H, Ph), 6.95 (s, 1H, H-4), 5.16 (s, 2H, CH₂); δ_C (CDCl₃) 131.9 (s) 131.5 (d) 130.0 (d), 129.8 (d), 128.7 (d), 128.2 (s), 81.8 (t), 66.3 (s).

1-(Benzyloxy)-2-chloro-5-(tributylstannyl)imidazole (13). After addition of tributylchlorostannane (0.41 mL, 1.5 mmol), the mixture was worked up as above to give the crude product, which was flash chromatographed (heptanes−ethyl acetate, 1:0 → 4:1), affording 438 mg (88%) of **13** as an oil. The compound was unstable, and a correct elemental analysis could not be obtained. NMR: $\delta_{\rm H}$ (CDCl₃) 7.42 (s, 5H, Ph), 6.81 (s, 1H, H-4), 5.09 (s, 2H, CH₂), 1.55−0.84 (m, 27H, 3Bu); $\delta_{\rm C}$ (CDCl₃) 132.6, 132.5, 129.1, 128.9, 128.4, 127.3, 81.07, 28.47 ($J_{\rm C-Sn}$ = 9 Hz), 26.8 ($J_{\rm C-Sn}$ = 34 Hz), 13.2, 10.0 ($J_{\rm C-Sn}$ = 179 Hz).

Bromination of 1-(Benzyloxy)-2,5-dichloroimidazole (16). 1-(Benzyloxy)-4-bromo-2,5-dichloroimidazole (17). Bromine (0.5 mL, 9.7 mmol) was added slowly with stirring at 0 °C to a mixture of 1-(benzyloxy)-2,5-chloroimidazole (2.0 g, 8.23 mmol), dichloromethane (15 mL), water (15 mL), and sodium carbonate (2.82 g, mmol). After the resulting mixture was stirred for 16 h, sodium sulfite (ca 2 g) dissolved in water (5 mL) was added. The layers were separated, and the aqueous phase was extracted with dichloromethane (2 × 15 mL). Drying of the combined organic phases followed by filtration, evaporation, and flash chromatography (heptanes—ethyl acetate, $1:0 \rightarrow 4:1$) gave 2.61 g (98%) of **17**. Mp: 51-52 °C (pentane). Anal. Found: C, 37.44; H, 2.08; N, 8.59. Calcd for $C_{10}H_8N_2OCl_2Br$: C, 37.30; H, 2.19; N, 8.70. NMR: δ_H (CDCl₃)

7.44 (s, 5H, Ph), 5.20 (s, 2H, CH₂); $\delta_{\rm C}$ (CDCl₃) 131.5, 130.1, 130.0, 128.7, 126.0, 115.3, 107.9, 82.1.

Preparation of 4-Substituted 1-(Benzyloxy)-2,5-dichloroimidazoles 18-23. Standard Procedure. Under nitrogen, a solution of 17 (323 mg, 1.0 mmol) in tetrahydrofuran (5 mL) was cooled to -78 °C. n-Butyllithium (1.61 M in hexanes) (0.93 mL, 1.5 mmol) was added with stirring over 2 min. After the resulting mixture was stirred for a further 1 min, the electrophile was added. Stirring was continued at −78 °C for 1 h, and the reaction mixture was allowed to warm to 20 °C over the course of 1 h. Stirring was continued at 20 °C for a further 0.5 h. The mixture was worked up by addition of saturated aqueous sodium hydrogen carbonate (10 mL), extraction with dichloromethane (3 × 10 mL), drying (MgSO₄), filtration, and removal of the solvents to give the crude product.

1-(Benzyloxy)-2,5-dichloroimidazole (18). After addition of methanol (0.2 mL, 4.9 mmol), the mixture was worked up as described above to give a residue which upon flash chromatography (heptanes-ethyl acetate, $1:0 \rightarrow 2:1$) gave 217 mg (89%) of 18, identical with the material described above.

1-(Benzyloxy)-2,5-dichloro-4-methylimidazole (19). Methyl iodide (0.32 mL, 5 mmol) was added, and the mixture was stirred at -78 °C for 1 h. To destroy excess methyl iodide, 33% dimethylamine in ethanol (5 mL) was added. The mixture was worked up as above to give the crude product, which was flash chromatographed (heptanes-ethyl acetate, 1:1), affording 219 mg (85%) of 19. Mp: below room temperature. Anal. Found: C, 51.67; H, 3.91; Ñ, 11.02. Calcd for C₁₁H₁₀N₂OCl₂: C, 51.39; H, 3.92; N, 10.90. NMR: $\delta_{\rm H}$ (CDCl₃) 7.43 (s, 5H, Ph), 5.15 (s, 2H, CH₂), 2.14 (s, 3H, Me); δ_C (CDCl₃) 131.1 (s), 130.0 (d), 129.7 (d), 129.5 (s), 128.6 (d), 125.2 (s), 112.0 (s), 81.6 (t), 12.5 (q).

1-(Benzyloxy)-2,5-dichloro-4-formylimidazole (20). After addition of dimethylformamide (0.15 mL, 2 mmol), the mixture was stirred as in the standard procedure. Then 2 M aqueous hydrochloric acid (5 mL) was added, and the mixture was stirred for 1 h. Addition of saturated aqueous sodium hydrogen carbonate until pH 8 and extractive workup with dichloromethane as described above gave a residue which upon flash chromatography (heptanes-ethyl acetate, 1:1) afforded 252 mg (93%) of **20** as a yellow oil which crystallized from pentane-ethyl acetate. Recrystallization (pentane) gave mp 85-86 °C. Anal. Found: C, 48.84; H, 2.93; N, 10.37. Calcd for $C_{11}H_8N_2O_2Cl_2$: C, 48.73; H, 2.97; N, 10.33. NMR: δ_H (CDCl₃) 9.74 (s, 1H, CHO), 7.47-7.27 (m, 5H, Ph), 5.27 (s, 2H, CH₂); δ_{C} (CDCl₃) 182.7 (d), 131.2 (s), 130.3 (d), 130.3 (d), 129.8 (s), 128.9 (d), 122.1 (s), 82.5 (t). One signal was hidden by another absorption.

1-(Benzyloxy)-2,5-dichloro-4-iodoimidazole (21). After addition of iodine (508 mg, 2 mmol), the mixture was worked up as above to give the crude product, which was flash chromatographed (heptanes-ethyl acetate, $1:0 \rightarrow 4:1$), affording 352 mg (96%) of **21**. Mp: 56 °C (pentane). Anal. Found: C, 32.85; H, 1.96; N, 7.54. Calcd for $C_{10}H_7N_2OCl_2I$: C, 32.55; H, 1.91; N, 7.59. NMR: $\delta_{\rm H}$ (CDCl₃) 7.42 (s, 5H, Ph), 5.20 (s, 2H, CH₂); δ_C (CDCl₃) 131.7, 130.3, 130.2, 128.9, 127.6, 121.1, 82.2, 75.4.

1-(Benzyloxy)-2,5-dichloro-4-(tributylstannyl)imidazole (22). After addition of tributylchlorostannane (0.41 mL, 1.5 mmol), the mixture was worked up as above to give the crude product, which was flash chromatographed (heptanesethyl acetate, $1:0 \rightarrow 4:1$), affording 441 mg (83%) of **22** as an oil. Anal. Found: C, 49.60; H, 6.63; N, 5.27. Calcd for C₂₂H₃₄N₂-OCl₂Sn: C, 49.66; H, 6.44; N, 5.26. NMR: $\delta_{\rm H}$ (CDCl₃) 7.45-7.42 (m, 5H, Ph), 5.17 (s, 2H CH₂),1.6-0.8 (m, 27H, 3 Butyl); δ_{C} (CDCl₃) 133.4, 132.2, 129.9, 129.5, 128.5, 123.6, 81.3, 28.5 $(J_{C-Sn} = 10 \text{ Hz}), 27.0 (J_{C-Sn} = 28 \text{ Hz}), 13.5, 9.6. (t, J_{C-Sn} = 180)$ Hz).

1-(Benzyloxy)-2,5-dichloroimidazole-4-carboxylic Acid (23). Lithiation was performed as described above. Then the septum was removed, and solid CO₂ (1.5 g) was added. Stirring was continued for 1 h at -78 °C, and the mixture was allowed to warm to room temperature over the course of 1 h. HCl (1 M, 10 mL) was added, and stirring was continued for a further 1 h. The THF was removed, which induced precipitation. Filtration, washing with HCl (1 M), and drying gave 252 mg

(78%) of 23. Anal. Found: C, 46.13; H, 3.07; N, 9.54. Calcd for $C_{11}H_8N_2O_3Cl_2$: C, 46.02; H, 2.81; N, 9.75. NMR: δ_H (DMSO) 7.52–7.45 (m, 5H, Ph), 5.34 (s, 2H, CH₂); δ_C (DMSO) 161.6, 132.6, 130.8, 130.3, 129.1, 127.7, 123.9, 122.3, 82.3.

Bromination of 7. 1-(Benzyloxy)-4,5-dibromo-2-chloroimidazole (31). Bromine (0.79 mL, 15.37 mmol) was added to a mixture of 1-(benzyloxy)-2-chloroimidazole (916.9 mg, 4.39 mmol) and sodium carbonate (1.67 g, 15.8 mmol) in DMF (10 mL). The mixture was stirred for 20 h at room temperature and quenched with saturated aqueous sodium sulfite (10 mL). Extraction with diethyl ether (3×20 mL), drying, filtration, and evaporation followed by flash chromatography (heptanesethyl acetate, $1:0 \to 4:1$) gave 1.25 g (77%) of **31**. Mp: 65-66 °C. Anal. Found: C, 33.00; H, 2.19; N, 7.56. Calcd for C₁₀H₇N₂-OClBr₂: C, 32.78; H, 1.93; N, 7.64. NMR: δ_H (CDCl₃) 7.46-7.42 (m, 5H, Ph), 5.16 (s, 2H, CH₂); δ_C (CDCl₃) 131.6, 130.1, 130.0, 128.8, 127.0, 111.8, 101.6, 82.1.

Sulfite Reduction of 31. 1-(Benzyloxy)-4-bromo-2chloroimidazole (32). Bromine (0.71 mL, 13.8 mmol) was added to a mixture of 7 (826 mg, 3.96 mmol) and sodium carbonate (1.57 g, 14.2 mmol) in DMF (4 mL). The mixture was stirred for 20 h at room temperature and quenched with saturated aqueous sodium sulfite (5 mL). Extraction with diethyl ether (3 \times 20 mL), drying, filtration, and evaporation gave 31, which, without further purification, was dissolved in methanol (40 mL). Sodium sulfite 7H₂O (10 g, 39.6 mmol) and water (20 mL) were added, and the mixture was refluxed for 24 h. Extraction with dichloromethane (3 \times 50 mL), drying, filtration, and evaporation followed by flash chromatography (heptanes-ethyl acetate, $1:0 \rightarrow 4:1$) gave 891 mg (78%) of 32. Mp: 71 °C (ethyl acetate-pentanes). Anal. Found: C, 42.06; H, 2.98; N, 9.65. Calcd for C₁₀H₈N₂OClBr: C, 41.77; H, 2.80; N, 9.74. NMR: $\delta_{\rm H}$ (CDCl₃) 7.43 (s, 5H, Ph), 5.16 (s, 2H, CH₂); δ_{C} (CDCl₃) 131.6, 130.1, 130.0, 128.8, 127.0, 111.8, 101.6, 82.1.

Preparation of 4-Substituted 1-(Benzyloxy)-2-chloro-5-(trimethylsilyl)imidazoles 25-28. Standard Procedure. Under nitrogen, a solution of 31 (367 mg, 1.0 mmol) in tetrahydrofuran (5 mL) was cooled to −78 °C. *n*-Butyllithium (1.62 M in hexanes) (0.68 mL, 1.1 mmol) was added with stirring over 2 min. After the resulting mixture was stirred for a further 1 min, trimethylchlorosilane (0.138 mL, 1.1 mmol) was added. After the resulting mixture was stirred for 0.5 h at -78 °C, n-butyllithium (1.62 M in hexanes) (0.68 mL, 1.1 mmol) was added over 2 min. After the resulting mixture was stirred for a further 1 min, the electrophile was added. Stirring was continued at -78 °C for 1 h, and the reaction mixture was allowed to warm to 20 °C over the course of 1 h. Stirring was continued at 20 $^{\circ}\text{C}$ for a further 0.5 h. The mixture was worked up by addition of saturated aqueous sodium hydrogen carbonate (10 mL), and extraction with dichloromethane (3 imes10 mL), drying (MgSO₄), filtration, and removal of the solvents gave the crude product.

1-(Benzyloxy)-4-bromo-2-chloro-5-(trimethylsilyl)imidazole (24). Instead of addition of the second equivalent of n-butyllithium, the reaction mixture was quenched with saturated aqueous sodium hydrogen carbonate (10 mL), and the reaction mixture was allowed to warm to 20 °C. Addition of water (10 mL), extraction with dichloromethane (3 \times 20 mL), drying (MgSO₄), filtration, and removal of the solvents gave the crude product. Chromatography (ethyl acetateheptanes, $0:1 \rightarrow 1:4$) provided 338 mg (94%) of **24**. Mp: 65 °C (heptanes). R_f (EtOAc-heptanes, 1: 4): 0.56. Anal. Found: C, 43.65; H, 4.49; N, 7.77. Calcd for C₁₃H₁₆N₂OBrClSi: C, 43.41; H, 4.48; N, 7.79. NMR: $\delta_{\rm H}$ (CDCl₃): 7.43 (s, 5H, Ph), 5.13 (s, 2H, CH₂), 0.42 (s, 9H, SiMe₃); δ_C (CDCl₃) 132.2, 129.7, 129.5, 128.9, 128.5, 127.3, 118.9, 81.9, -0.24

1-(Benzyloxy)-2-chloro-5-(trimethylsilyl)imidazole (25). After addition of methanol (0.2 mL, 4.9 mmol), the mixture was worked up as above to give a residue which was flash chromatographed (heptanes-ethyl acetate, $1:0 \rightarrow 4:1$) to produce 255.3 mg (91%) of **25**. Mp: 53-54 °C. Anal. Found: C, 55.88; H, 6.12; N, 9.98. Calcd for C₁₃H₁₇N₂OClSi: C, 55.60; H, 6.10; N, 9.98. NMR: $\delta_{\rm H}$ (CDCl₃): 7.48–7.42 (m, 5H, Ph), 6.91 (s, H-4), 5.15 (s, 2H, CH₂), 0.34 (s, 9H, SiMe₃); δ_C (CDCl₃)

132.8 (s), 132.4 (d), 129.9 (s), 129.5 (d), 129.3 (d), 128.8 (d), 81.3 (t), -1.3 (q). One signal was hidden by another absorption.

1-(Benzyloxy)-2-chloro-4-methyl-5-(trimethylsilyl)imidazole (26). Method a. Methyl iodide (0.32 mL, 5 mmol) was added, and the mixture was stirred at −78 °C for 1 h. To destroy excess methyl iodide, 33% dimethylamine in ethanol (5 mL) was added. The mixture was worked up as above to give the crude product, which was flash chromatographed (heptanes−ethyl acetate, 1:0 → 4:1), affording 215 mg (71%) of 26. Anal. Found: C, 57.03, H, 6.51, N, 9.51. Calcd for C₁₄H₁₉N₂OClSi: C,57.35; H, 6.50; N, 9.50. NMR: $\delta_{\rm H}$ (CDCl₃) 7.47−7.40 (m, 5H, Ph), 5.10 (s, 2H, CH₂), 2.24 (s, 3H, Me), 0.35 (s, 9H, SiMe₃); $\delta_{\rm C}$ (CDCl₃) 141.6 (s), 132.8 (s), 129.4 (d), 129.2 (d), 128.7 (d), 127.7(s), 123.8 (s), 81.1 (t), 15.8 (q), −0.4 (q).

Method b. *n*-Butyllithium (1.58 M in hexanes) (2.28 mL, 3.60 mmol) was added with stirring over 2 min to a solution of **24** (1079 mg, 3 mmol) in dry tetrahydrofuran (15 mL) at -78 °C. After the resulting mixture was stirred for a further 2 min, methyl iodide (0.29 mL, 4.5 mmol) was added. Stirring was continued for a further 1 h at -78 °C. After addition of 33% dimethylamine in ethanol (5 mL), the reaction mixture was allowed to warm to 20 °C. Addition of saturated aqueous sodium hydrogen carbonate (15 mL) and water (15 mL), extraction with dichloromethane (3 × 30 mL), drying (MgSO₄), filtration, and removal of the solvents gave the crude product, which was flash chromatographed (heptanes—ethyl acetate, 1:0 \rightarrow 4:1), affording 761 mg (86%) of **26**, identical with the material above.

1-(Benzyloxy)-2-chloro-4-formyl-5-(trimethylsilyl)imidazole (27). After addition of dimethylformamide (0.2 mL, 2.6 mmol), the mixture was stirred as in the standard procedure. Then 2 M aqueous hydrochloric acid (5 mL) was added, and the mixture was stirred for 1 h. Addition of saturated aqueous sodium hydrogen carbonate until pH 8 and extractive workup with dichloromethane as described above gave a residue which upon flash chromatography (heptanes—ethyl acetate, 1:0 \rightarrow 4:1) afforded 231 mg (75%) of 27. Mp: 45 °C. R_f (ethyl acetate—heptanes, 1:4): 0.36. Anal. Found: C, 54.30; H, 5.44; N, 9.16. Calcd for $C_{14}H_{17}N_2O_2ClSi$: C, 54.45; H, 5.55; N, 9.07. NMR: $\delta_{\rm H}$ (CDCl₃) 9.80 (s, CHO) 7.45 (s, 5H, Ph), 5.16 (s, 2H, CH₂), 0.46 (s, 3H, SiMe₃); $\delta_{\rm C}$ (CDCl₃) 186.4, 142.1, 136.8, 132.0, 131.9, 129.9, 129.6, 128.9, 82.2, -1.0.

1-(Benzyloxy)-2-chloro-4-formylimidazole (30). The crude product present in the dichloromethane solution was dissolved in methanol (10 mL). Addition of potassium carbonate (290 mg), stirring for 1 h at room temperature, addition of water (20 mL), extraction with dichloromethane (3 × 20 mL), drying (MgSO₄), filtration, and removal of the solvents gave the crude product, which after chromatography (heptanes—ethyl acetate, 10:1 → 4:1) afforded 167 mg (70%) of **30**. Mp: 83 °C (ethyl acetate—pentane). R_f (EtOAc—heptanes 1:4): 0.19. Anal. Found: C, 56.05; H, 3.88; N, 11.79. Calcd for C₁₁H₉N₂O₂Cl: C, 55.83; H, 3.83; N, 11.84. NMR: $\delta_{\rm H}$ (CDCl₃) 9.65 (s, CHO) 7.49—7.35 (m, 6H, Ph), 5.20 (s, 2H, CH₂); $\delta_{\rm C}$ (CDCl₃) 184.9, 135.4, 131.9, 130.3, 130.0, 129.9, 129.1, 122.5, 82.4.

1-(Benzyloxy)-2-chloro-4-iodo-5-(trimethylsilyl)imidazole (28). After addition of iodine (508 mg, 2.0 mmol), the

mixture was worked up as above to give the crude product, which was flash chromatographed (heptanes—ethyl acetate, 4:1), affording 354 mg (87%) of yellow **28**. Mp: 50-51 °C. Anal. Found: C, 38.67; H, 3.83; N, 6.76. Calcd for C₁₃H₁₆N₂OClISi: C, 38.38; H, 3.96; N, 6.88. NMR: $\delta_{\rm H}$ (CDCl₃) 7.44 (s, 5H, Ph), 5.11 (s, 2H, CH₂), 0.44 (s, 3H, SiMe₃); $\delta_{\rm C}$ (CDCl₃) 132.2, 132.0, 130.2, 129.7, 129.4, 128.8, 85.5, 81.9, -0.43.

Desilylation with Sodium Methoxide. 1-(Benzyloxy)-2-chloro-4-methylimidazole (29). To a mixture of sodium (160 mg, 7 mmol) in methanol (2 mL) was added **26** (166 mg, 0.56 mmol) in methanol (2 mL). Stirring for 3 h, addition of saturated aqueous sodium hydrogen carbonate (5 mL) and water (5 mL), extraction with dichloromethane (3 × 10 mL), drying, filtration, and evaporation followed by flash chromatography (heptanes—ethyl acetate, 4:1) afforded 119 mg (95%) of **29** as a white crystalline compound. Mp: 50–51 °C (ethyl acetate—pentane). Anal. Found: C, 59.60; H, 4.95; N, 12.55. Calcd for C₁₁H₁₁N₂OCl: C, 59.33; H, 4.98; N, 12.58. NMR: δ_H (CDCl₃) 7.43–7.37 (m, 5H, Ph), 6.61 (q, J= 0.9 Hz, 1H, H-5) 5.10 (s, 2H, CH₂), 2.11 (d, J= 0.6 Hz, 3H, Me); δ_C (CDCl₃) 133.3 (s), 133.0 (s), 129.8 (d), 129.6 (d), 128.8 (d), 125.9 (s), 114.0 (d), 81.7 (t), 14.1 (q).

Debenzylation with Hydrogen/Palladium on Carbon. 1-Hydroxyimidazole Hydrochloride (15). 18 (182 mg, 0.75 mmol), 10% palladium on carbon (50 mg), and methanol (6 mL) were stirred under hydrogen at 1 bar and 0 °C for 2 h. Filtration through kieselguhr and removal of the solvent gave 90 mg (100 %) of **15**, identical with the material described previously.^{7,17}

1-Hydroxy-5-methylimidazole Hydrochloride (14). 9 (348 mg, 1.56 mmol), 10% palladium on carbon (65 mg), and methanol (10 mL) were stirred under hydrogen at 1 bar and 0 °C for 2 h. Filtration through kieselguhr and removal of the solvent gave 201.1 mg (96%) of **14**. Mp: 159–160 °C. Anal. Found: C, 35.51; H, 5.03; N, 20.56. Calcd for C₄H₇N₂OCl: C, 35.70; H, 5.24; N, 20.82. NMR: $\delta_{\rm H}$ (D₂O) 8.65 (d, J = 1.93 Hz, 1H), 7.08 (s, 1H), 2.24 (d, J = 1.93 Hz); $\delta_{\rm C}$ (D₂O) 131.0, 130.7, 115.3, 8.0.

1-Hydroxy-4-methylimidazole Hydrochloride (33). 29 (167 mg, 0.75 mmol), 10% palladium on carbon (38 mg), and methanol (4 mL) were stirred under hydrogen at 1 bar and 0 °C for 2 h. Filtration through kieselguhr and removal of the solvent followed by addition of 4 M HCl and removal of the solvent gave 100 mg (99%) of 33 as a semicrystalline compound. Anal. Found: C, 33.63; H, 4.87; N, 19.41. Calcd for C₄H₆N₂O, 1.25 mol of HCl: C, 33.44; H, 5.09; N, 19.50. NMR: $\delta_{\rm H}$ (D₂O) 8.65 (s, 1H), 7.19 (s, 1H), 2.22 (s, 3H); $\delta_{\rm C}$ (D₂O) 129.7, 129.1, 117.3, 10.1.

Acknowledgment. This work was supported by the Danish Council for Technical and Scientific Research and the Lundbeck Foundation.

Supporting Information Available: Spectral data of compound **13**. This material is available free of charge via the Internet: http://pubs.acs.org.

JO001554N

⁽¹⁷⁾ Baus, U.; Reuther, W. Eur. Pat. Appl. EP, 1991; *Chem. Abstr.* **1991**, *115*, 29334.